Костные рыбы. Зрение пресноводных рыб

Органы чувств. Зрение.

Орган зрения - глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка - пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию. Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10-12 м, а ясно рыбы видят не далее 1,5 м. Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1) .

Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой- в зените. Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2) .


Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5-10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3) .вне преломления лучей водной поверхностью может увидеть человека.


Рыбы различают цвета и даже оттенки.

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне - более темную. Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным. В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов - отличают треугольник от квадрата, куб от пирамиды.

Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли. Последние исследования показали, что многие рыбы - килька, кефаль, сырть, сайра - направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.

Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором. Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевоквблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.

Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее. Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.

Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8-10 м и сидящего или ловящего взабродку - далее 5-6 м; имеет значение при этом и прозрачность воды. Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова. Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.

Слух.

Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств. Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.

Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие. Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая. Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».

Орган боковой линии.

Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания. При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне - сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.

Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную. Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.

Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу. Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.

Органы обоняния и вкуса.

Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием. В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье - только при наличии токов воды.

Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее - у ночных и сумеречных рыб (угорь, сом, карп, линь).

Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор " кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.

В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин. Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п. Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.

Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.

Таблица 1

Представители костных рыб имеют костный или костно-хрящевый скелет. По старой систематике костных рыб выделяли в ранге класса, в котором было четыре подкласса: хрящекостные (осетровые), лучеперые (подавляющее большинство рыб), двоякодышащие (протоптерус), кистеперые (латимерия). По новой систематике костные рыбы - это группа, включающая два класса: лучеперые и лопастеперые рыбы.

Костные рыбы появились приблизительно в девоне. На сегодняшний день их около 30 тысяч видов.

Рыбы в процессе эволюции обзавелись множеством прогрессивных черт строения, которые позволили им приспособиться к разнообразным условиям водной жизни, а следовательно, рыбы многообразны по условиям жизни и форме тела.

Кожа костных рыб

Наружный покров рыб образует эпидермис (многослойный эпителий) и дерма (соединительная ткань). В эпидермисе есть железы, выделяющие слизь, которая уменьшает трение тела о воду при движении рыбы.

Чешуя костная. Это отличает костных рыб от хрящевых, у которых чешуя плакоидная (имеет иное происхождение и строение).

В коже рыб есть пигментные клетки, обуславливающие окраску тела. Некоторые виды рыб могут менять свою окраску, приспосабливаясь к окружающему фону.

Скелет рыбы

Скелет рыб составляет позвоночник, мозговой череп, висцеральный скелет, скелет парных конечностей и их поясов.

Также как у хрящевых у костных рыб позвоночник делится на туловищный и хвостовой отделы.

От поперечных отростков тел позвонков отходят ребра. Ребра оканчиваются свободно, они служат защитой внутренним органам.

Лучи парных плавников костные, соединены с костями поясов конечностей. Плавник движется относительно своего пояса как единый рычаг. Пояса конечностей костной рыбы лежат в мягких тканях свободно.

Мышечная система сохраняет метамерное строение, однако более сложное, чем у хрящевых рыб. Мышцы крепятся к костям скелета.

Плавают рыбы за счет движения хвостового плавника. Парные конечности - грудные и брюшные плавники - выполняют функцию рулей глубины.

Нервная система и органы чувств рыб

Спинной мозг рыб находится в канале, образованном верхними дугами позвонков. Таким образом спинной мозг хорошо защищен.

Головной мозг защищен черепной коробкой и состоит из пяти отделов: переднего мозга с обонятельными долями, промежуточного и среднего мозга, мозжечка, продолговатого мозга. Наиболее развиты у костных рыб мозжечок и средний мозг. Первый отвечает за координацию движений, а во втором находятся зрительные центры.

В глазах находится шаровидный хрусталик, роговица утолщена. Аккомодация достигается за счет движения хрусталика, а не изменения его формы (как, скажем, у млекопитающих). Рыбы видят в даль обычно до 15 м, т. е. их хрусталик приспособлен для зрения на близком расстоянии. Такое приспособление зрения в процессе эволюции обусловлено низкой прозрачностью воды. Глаза имеют веки.

Ноздри ведут в замкнутые обонятельные мешки. Там расположены обонятельные рецепторы.

Хорошо развиты органы химического чувства (обоняния и вкуса). Вкусовые почки у костных рыб находятся не только в ротовой полости, но и в различных местах кожи тела.

Орган слуха и равновесия состоит из внутреннего уха, включающего три полукружных канала (орган равновесия), и полого мешочка, который воспринимает звуковые колебания. Благодаря плотности воды звуковые волны передаются через кости черепа и достигают органов слуха (другими словами, во внешнем отверстии нет необходимости). Рыбы могут издавать звуки (скрип, щелчки). Такие звуки выполняют роль сигналов при поиске пищи и во время размножения. Звуки издаются с помощью трения зубов, костей, при изменении объема плавательного пузыря.

Осязательные клетки у рыб расположены по всей поверхности тела.

Орган боковой линии

У рыб имеется уникальный орган боковой линии. Он состоит из чувствительных клеток, которые расположены на дне желобков или в каналах на теле рыбы. Эти каналы или желобки имеют отверстия во внешнюю среду. Чувствительные клетки органа боковой линии имеют реснички. Каналы тянутся по обеим сторонам всего тела рыбы.

Функция органа боковой линии - это восприятие колебаний воды. С помощью боковой линии рыбы определяют скорость и направление течения, наличие предметов рядом и даже колебания напряженности магнитных и электрических полей.

Пищеварительная система рыб

В ротовой полости костных рыб имеются недифференцированные зубы. Зубы могут находиться не только на челюстных, но и небных и некоторых других костях. Зубы рыб выполняют лишь функции захвата и удержания добычи, но не измельчают еду. Рыбы просто заглатывают пищу. Слюнных желез у них нет.

За ротовой полостью идет глотка и пищевод, открывающийся в желудок. Желудочный сок содержит соляную кислоту и пепсин, которые частично расщепляют пищу. Дальнейшее переваривание происходит в кишечнике с помощью секретов печени и поджелудочной железы. У растительноядных видов костных рыб в кишечнике обитают симбиотические простейшие и бактерии, которые выделяют ферменты, способствующие перевариванию пищи.

Мальки рыб питаются планктоном. Пища взрослых костных рыб разнообразна, многие всеядны.

Плавательный пузырь

Плавательный пузырь в процессе эмбрионального развития костной рыбы образуется как вырост на спинной стороне кишки в области будущего пищевода. У ряда рыб пищевод и плавательных пузырь сохраняют сообщение между собой и во взрослом состоянии.

Плавательный пузырь, выполняя функцию гидростатического органа, позволяет костным рыбам находиться наплаву без всяких мышечных усилий. Это происходит за счет изменения объема газов в пузыре. Кровь капилляров стенок пузыря поглощает из него или выделяет в него газ. Когда пузырь увеличивается, общая плотность рыбы уменьшается, и она всплывает.

У всех хрящевых рыб плавательного пузыря нет. Среди костных рыб его нет у скумбриевых и многих донных видов.

Кроме своей основной функции, плавательный пузырь частично участвует в дыхании.

Дыхательная система костных рыб

У костных рыб от 5 до 7 пар жаберных щелей, поддерживаемых жаберными дугами и прикрытых с каждой стороны одной жаберной крышкой.

В процессе эмбрионального развития жаберные отверстия образуются в переднем отделе пищеварительной трубки.

На жаберных дугах расположены жаберные лепестки, в которых находится густая сеть мелких капилляров. Здесь происходит газообмен.

Движение воды и омывание жаберных лепестков обеспечивается движениями рта и жаберных крышек. Костные рыбы засасывают воду через рот и на выдохе прогоняют ее через жаберные щели. При этом вода омывает жаберные лепестки.

Кроме дыхания жабрами ряд рыб частично осуществляют газообмен с помощью кожи. Также могут заглатывать воздух, в этом случае кислород всасывается кишечником.

Кровеносная система рыб

Сердце рыб двухкамерное (одно предсердие и один желудочек), следовательно, имеется только один круг кровообращения. Через сердце проходит венозная кровь, которая затем направляется в жабры. Оттуда уже артериальная кровь через выносящие жаберные артерии попадает в спинную аорту и по отходящим от нее сосудам разносится по тканям. Отдав кислород, кровь по венам собирается в предсердие.

Таким образом, приносящие жаберные артерии доставляют венозную кровь от сердца, а выносящие жаберные артерии с артериальной кровью объединяются в спинную аорту.

Сердце у рыб сокращается редко и слабо. Так у речного окуня происходит 20 сокращений в минуту. Следовательно, у рыб достаточно медленный обмен веществ. Рыбы холоднокровны (температура их тела зависит от температуры окружающей среды).

Выделительная система

Выделительная система рыб представлена двумя туловищными почками, которые имеют лентовидную форму.

У большинства костных рыб конечным веществом распада белков является аммиак. Он ядовит и для вывода его из организма требуется много воды.

Моча из почек через мочеточники поступает в мочевой пузырь, откуда выходит через самостоятельное отверстие. Частично продукты распада у рыб удаляются через жабры в процессе дыхания.

Размножение костных рыб

Подавляющее большинство рыб раздельнополы. Однако в качестве исключения имеются гермафродитные виды, у которых половые железы попеременно выполняют функции то семенников, то яичников. А вот у морского окуня разные части половых желез одновременно образуют сперматозоиды и яйцеклетки.

Размножение только половое. У костных рыб оплодотворение почти всегда наружное.

Для рыб характерна большая плодовитость, так как при внешнем оплодотворении много икры не оплодотворяется. Кроме того гибнет много мальков. У рыб, проявляющих заботу о потомстве, плодовитость ниже.

Некоторые виды (лососевые и др.) размножаются один раз в жизни, после чего погибают.

Индивидуальное развитие происходит с неполным превращением. Личинки рыб называются мальками.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико: на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. шт., у кальмара-162 тыс. шт., паука-16, человека-400 тыс. шт. Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.Колбочки при ярком свете воспринимают детали предметов и цвет: они улавливают длинные волны спектра. Палочки воспринимают слабый свет, но детального изображения создать не могут: воспринимая короткие волны, они примерно в 1000 раз чувствительнее колбочек.Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняется в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки и оказываются ближе к поверхности; колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных-палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается-до 25 млн на 1 мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета. Некоторые особенности в строении глаз рыб связаны с особенностями жизни в воде. Они эллипсовидной формы и имеют серебристую оболочку между сосудистой и белковой, богатую кристалликами гуанина, что придает глазу зеленовато-золотистый блеск. Роговица урыб почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый)-это расширяет поле зрения. Отверстие.в радужной оболочке (зрачок) может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз, как занавеска, и некоторые сельди и кефали имеют жировое веко-прозрачную пленку, закрывающую часть глаза.Расположение глаз у большинства видов по бокам головы является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали-168...170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров. Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей-серповидным отростком, идущим от сосудистой оболочки дна глазного бокала, а не за счет изменения кривизны хрусталика, как у млекопитающих.При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле.Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) -кристалликов гуанина, подстилаемых пигментом. Этот слой т пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторичнона сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабый свет, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза). Необычна модификация глаз у четырехглазки, обитающей в водах Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части:верхней рыба видит в воздухе, нижней-в воде. В воздушной среде могут функционировать глаза рыб, выползающих на сушу.Кроме глаз воспринимают свет эпифиз (железа внутренней секреции) и светочувствительные клетки, расположенные в хвостовой части, например,у миног.Роль зрения как источника информации для большинства рыб велика: при ориентации во время движения, отыскивании » захвате пищи, сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов"-брачного наряда и нерестового «церемониала»), в отношениях жертва-хищник и т. д. Карп видит при освещенности 0,0001 лк, карась-0,01 лк.Способность рыб воспринимать свет издавна использовалась в рыболовстве: лов рыбы на свет.Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия) и отпугивает других (кефаль, минога, угорь). Так же избирательно относятся разные виды к разным цветам и разным источникам света-надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет. Так ловят кильку, сайру и других рыб.Орган слуха и равновесия рыб. Он расположен в задней части черепной коробки и представлен лабиринтом. Ушных отверстий, ушной раковины и улитки нет, т. е. орган слуха представлен внутренним ухом.Наибольшей сложности достигает он у настоящих рыб:большой перепончатый лабиринт помещается в хрящевой или костной камере под прикрытием ушных костей. В нем различают верхнюю часть - овальный мешочек (ушко, utriculus) и нижнюю-круглый мешочек (sacculus). От верхней. части во взаимно перпендикулярных направлениях отходят три полукружных канала, каждый из которых на одном конце расширен в ампулу

Овальный мешочек с полукружными каналами составляет орган равновесия (вестибулярный аппарат). Боковое расширение нижней части круглого мешочка (lagena), являющегося зачатком улитки, не получает у рыб дальнейшего развития. От круглого мешочка отходит внутренний лимфатический (эндолимфатический) канал, который у акул и скатов через специальное отверстие в черепе выходит наружу, а у остальных рыб слепо заканчивается у кожи головы.Эпителий, выстилающий отделы лабиринта, имеет чувствующие клетки с волосками, отходящими во внутреннюю полость. Основания их оплетены разветвлениями слухового нерва.Полость лабиринта заполнена эндолимфой, в ней находятся «слуховые» камешки, состоящие из углекислой извести (отолиты), по три с каждой стороны головы: в овальном и круглом мешочках и лагене. На отолитах, как и на чешуе, образуются концентрические слои, поэтому отолиты, особенно наибольший,-часто используют для определения возраста рыб, а иногда и для систематических определений, так как их размеры и контуры неодинаковы у различных видов.У большинства рыб наибольший отолит располагается в круглом мешочке, но у карповых и некоторых других-в лагене.С лабиринтом связано чувство равновесия: при передвижении рыбы давление эндолимфы в полукружных каналах, а также со стороны отолита изменяется, и возникшее раздражение улавливается нервными окончаниями. При экспериментальном разрушении верхней части лабиринта с полукружными каналами рыба теряет способность удерживать равновесие и лежит на боку, спине или брюхе. Разрушение нижней части лабиринта не ведет к утрате равновесия.С нижней частью лабиринта связано восприятие звуков: при удалении нижней части лабиринта с круглым мешочком и лаге-ной рыбы не могут различать звуковые тона, например, при выработке условных рефлексов. Рыбы без овального мешочка и полукружных каналов, т. е. без верхней части лабиринта, дрессировке поддаются. Таким образом, установлено, что рецепторами звука являются именно круглый мешочек и лагена.Рыбы воспринимают как механические, так и звуковые колебания частотой от 5 до 25 Гц органами боковой линии, от 16 до 13000 Гц:-лабиринтом. Некоторые виды рыб улавливают колебания, находящиеся на границе инфразвуковых волн, боковой линией, лабиринтом и кожными рецепторами.Острота слуха у рыб меньше, чем у высших позвоночных, и у разных.видов неодинакова: язь воспринимает колебания, длина волны которых составляет 25. ..5524 Гц, серебряный карась-25...3840, угорь-36...650 Гц, причем низкие звуки улавливаются ими лучше. Акулы слышат звуки, издаваемые рыбами на расстоянии 500 м.Рыбы улавливают и те звуки, источник которых находится не в воде, а в атмосфере, несмотря на то, что такой звук на 99,9% отражается поверхностью воды и, следовательно, в воду проникает только 0,1% образующихся звуковых волн.В восприятии звука у карповых и сомовых рыб большую роль играет плавательный пузырь, соединенный с лабиринтом и служащий резонатором.Рыбы могут и сами издавать звуки. Звукоиздающие органы у рыб различны. Это плавательный пузырь (горбыли, губаны и др.), лучи грудных плавников в комбинации с костями плечевого пояса (сомы), челюстные и глоточные зубы (окуневые и карповые) и др. В связи с этим неодинаков и характер звуков. Они могут напоминать удары, цоканье, свист, ворчанье, хрюканье, писк, кваканье, рычание, треск, рокот, звон, хрип, гудок, крики птиц и стрекотание насекомых.Сила и частота звуков, издаваемых рыбами одного вида, зависит от пола, возраста, пищевой активности, здоровья, причиняемой боли и др.Звучание и восприятие звуков имеет большое значение в жизнедеятельности рыб. Оно помогает особям разного пола найти друг друга, сохранить стаю, сообщить сородичам о присутствии пищи, охранять территорию, гнездо и потомство от врагов, является стимулятором созревания во время брачных игр, т. е. служит важным средством общения. Предполагают, что у глубоководных рыб, рассредоточенных в темноте на океанических глубинах, именно слух в сочетании с органами боковой линии и обонянием обеспечивает общение, тем более, что звукопроводимость, более высокая в воде, чем в воздухе, на глубине возрастает. Особенно важен слух для ночных рыб и обитателей мутных вод.Реакция разных рыб на посторонние звуки различна: при шуме одни уходят в сторону, другие (толстолобик, семга, кефаль) выпрыгивают из воды. Это используют при организации лова. В рыбоводных хозяйствах, в период нереста, движение транспорта около нерестовых прудов запрещено.

Железы внутренней секреции

Железами внутренней секреции являются гипофиз, эпифиз, надпочечники, поджелудочная, щитовидная и ультимобронхиальная (подпищеводная) железы, а также урогипофиз и гонады, Они выделяют гормоны в кровь.Гипофиз-непарное, неправильной овальной формы образование, отходящее от нижней стороны промежуточного мозга (гипоталамуса). Очертание, размеры и положение его чрезвычайно разнообразны. У сазана, карпа и многих других рыб гипофиз сердцевидной формы, лежит почти перпендикулярно мозгу. У серебряного карася он вытянут, немного сплющен с боков и лежит параллельно мозгу.В гипофизе различают два основных отдела различного происхождения: мозговой (нейрогипофиз), составляющий внутреннюю часть железы, который развивается из нижней стенки промежуточного мозга как впячивание дна третьего мозгового желудочка, и железистый (аденогипофиз), образующийся из впячивания верхней стенки глотки. В аденогипофизе выделяют три части (лопасти, доли): главную (переднюю, расположенную на периферии), переходную (наибольшую) и промежуточную (рис. 34). Аденогипофиз является центральной железой эндокринной системы. В железистой паренхиме его долей вырабатывается секрет, содержащий ряд гормонов, стимулирующих рост (соматический гормон необходим для роста костей), регулирующих функции половых желез и таким образом воздействующих на половое созревание, влияющих на деятельность пигментных клеток (определяют окраску тела и прежде всего появление брачного наряда) и повышающих устойчивость рыб к высокой температуре, стимулирует синтез белка, работу щитовидной железы, участвует в осморегуляции. Удаление гипофиза влечет за собой остановку роста и созревания.Гормоны, выделяемые нейрогипофизом, синтезируются в ядрах гипоталамуса и переносятся по нервным волокнам в нейрогипофиз, а затем попадают в пронизывающие его капилляры, Таким образом, это нейтросекреторная железа. Гормоны принимают участие в осморегуляции, вызывают нерестовые реакции.Единую систему с гипофизом образует гипоталамус, клетки которого выделяют секрет, регулирующий гормонообразующую деятельность гипофиза, а также водно-солевой обмен и др.Наиболее интенсивное развитие гипофиза приходится на период превращения личинки в малька, У половозрелых рыб активность его неравномерна в связи с биологией размножения рыб и, в частности, с характером икрометания. У единовременно икромечущих рыб секрет в железистых клетках накапливается почти одновременно "после выведения секрета, к моменту овуляции гипофиз опустошается, и в секреторной деятельности его наступает перерыв, В яичниках к моменту нереста заканчивается развитие овоцитов, подготовляемых к вымету в данный сезон. Овоциты выметываются в один прием и составляют таким образом единственную генерацию,У порционно икромечущих рыб секрет в клетках образуется неодновременно. Вследствие этого после вывода секрета во время первого нереста остается часть клеток, в которых процесс образования коллоида не закончился. В результате он может выделяться порциями на протяжении всего нерестового периода. В свою очередь, овоциты, подготавливаемые к вымету в данный сезон, развиваются также асинхронно. К моменту первого нереста в яичниках содержатся не только созревшие овоциты, но и те, развитие которых еще не завершено. Такие овоциты созревают через некоторое время после выведения первой генерации овоцитов, т. е. первой порции икры. Так образуется несколько порций икры.Исследование путей стимуляции созревания рыб привели почти одновременно в первой половине нашего века, но независимо друг от друга бразильских (Иеринг и Кардозо, 1934- 1935) и советских ученых (Гербильский и его школа, 1932- 1934) к разработке метода гипофизарных инъекций производителям для ускорения их созревания. Этот метод позволил в значительной мере управлять процессом созревания рыб и тем самым увеличивать размах рыбоводных работ по воспроизводству ценных видов. Гипофизарные инъекции широко применяют при искусственном разведении осетровых и карповых рыб.Третий нейросекреторный отдел промежуточного мозга - эпифиз. Его гормоны (серотин, мелатонин, адреногломеруло-тропин) участвуют в сезонных перестройках обмена веществ. На его активность влияют освещенность и продолжительность светового дня: при их увеличении повышается активность рыб, ускоряется рост, изменяются гонады и др.Щитовидная железа расположена в области глотки, около брюшной аорты. У одних рыб (некоторые акулы, лососевые) она является плотным парным образованием, состоящим из фолликулов, выделяющих гормоны, у других (окуневые, карповые) железистые клетки не образуют оформленного органа, а лежат диффузно в соединительной ткани.Секреторная деятельность щитовидной железы начинается очень рано. Например, у личинок осетра на 2-й день после выклева железа, хотя и не вполне сформированная, проявляет активную секреторную деятельность, а на 15-й день формирование фолликулов почти заканчивается. Содержащие коллоид фолликулы обнаруживаются у 4-дневных личинок севрюги.В дальнейшем железа периодически выделяет скапливаюшийся секрет, причем усиление ее деятельности отмечается у молоди во время метаморфоза, а у половозрелых рыб-в преднерестовый период, до появления брачного наряда. Максимум активности совпадает с моментом овуляции.Активность щитовидной железы меняется в течение жизни, постепенно падая в процессе старения, а также в зависимости от обеспеченности рыб пищей: недокорм вызывает усиление функции.У самок щитовидная железа развита сильнее, чем у самцов, однако у самцов она более активна.Щитовидной железе принадлежит важная роль в регуляции обмена веществ, процессов роста и дифференцировки, углеводного обмена, осморегуляции, поддержании нормальной деятельности нервных центров, коры надпочечников, половых желез. Добавление препарата щитовидной железы в корм ускоряет развитие молоди. При нарушении функции щитовидной железы появляется зоб.Половые железы-яичники и семенники выделяют половые гормоны. Секреция их периодична: наибольшее количество гормонов образуется в период зрелости гонад. С этими гормонами связывают появление брачного наряда.В яичниках акул и речного угря, а также в плазме крови акул обнаружены гормоны 17^-эстрадиол и эстерон, локализующиеся преимущественно в яйцеклетках, меньше - в ткани яичника. У самцов акул и лосося обнаружены дезоксикортикостерон и прогестерон.У рыб существует зависимость между гипофизом, щитовидной железой и гонадами. В преднерестовый и нерестовый периоды созревание гонад направляется активностью гипофиза и щитовидной железы, а деятельность этих желез тоже взаимосвязана.Поджелудочная железа у костистых рыб выполняет двойную функцию-железы внешней (выделение ферментов) и внутренней (выделение инсулина) секреции.Образование инсулина локализовано в островках Лангерганса, вкрапленных в ткань печени. Он играет важную роль в регуляции углеводного обмена и синтеза белков.Ультимобранхиальные (супраперибранхи-альные, или подпищеводные) железы обнаружены как у морских, так и пресноводных рыб. Это парные или непарные образования, лежащие, например у щук и лососевых, по бокам пищевода. Клетки желез секретируют гормон кальцитонин, который препятствует резорбции из костей кальция и таким образом не дает повышаться его концентрации в крови.Надпочечники. В отличие от высших животных у рыб мозговое и корковое вещество разобщено и не образует единого органа. У костистых рыб они располагаются в разных участках почки. Корковое вещество (соответствующее кортикальной ткани высших позвоночных) внедрено в переднюю часть почки и носит название интерреналовой ткани. В нем обнаружены те же вещества, что и у других позвоночных, но содержание, например, липидов, фосфолипидов, холестерина, аскорбиновой кислоты у рыб больше.Гормоны коркового слоя оказывают многостороннее влияние на жизнедеятельность организма. Так, глюкокортикоиды (у рыб обнаружены кортизол, кортизон, 11-дезоксикортизол) и половые гормоны принимают участие в развит!!и скелета, мышц, половом поведении, углеводном обмене. Изъятие интерреналовой ткани ведет к остановке дыхания еще до остановки сердца. Кортизол участвует в осморегуляцин.Мозговому веществу надпочечников у высших животных у рыб соответствует хромаффинная ткань, отдельные клетки которой разбросаны и ткани почек. Выделяемый ими гормон адреналин воздействует на сосудистую и мышечную системы, увеличивает возбудимость и силу пульсации сердца, вызывает расширение и сужение сосудов. Увеличение концентрации адреналина в крови вызывает чувство тревоги.Нейросекреторным и эндокринным органом у костистых рыб является и урогипофиз, находящийся в каудальной области спинного мозга и участвующий в осморегуляции, оказывающий большое влияние на работу почек.

Ядоносность и ядовитость рыб

Ядоносные рыбы имеют ядоносный аппарат, состоящий из шипов и ядовитых желез, расположенных у основания этих шипов (Mvoxocephalus scorpius в период икрометания) или в их желобках шипов и желобках плавниковых лучей (Scorpaena, Frachinus, Amiurus, Sebastes и др.).

Сила действия ядов различна: от образования в месте укола нарыва до расстройства дыхания и сердечной деятельности и смерти (в тяжелых случаях поражения Trachurus). В наших морях ядоносными являются морской дракончик (скорпион), звездочет (морская корова), морской ерш (скорпена), скат-хвостокол, морской кот, колючая акула катран), керчак, морской окунь, ерш-носарь, ауха (китайский ерш), морская мышь (лира), высоколучевой окунь.

При употреблении в пищу эти рыбы безвредны.

Рыбы, ткани и органы которых ядовиты по химическому составу, относятся к ядовитым и употребляться в пищу не должны. Они особенно многочисленны в тропиках. У акулы Carcharinus glaucus ядовита печень, у скалозуба Tetradon-яичники и икра. В нашей фауне у маринки Schizothorax и османа Diptychus ядовиты икра и брюшина, у усача Barbus и храмули Varicorhynus икра оказывает слабительное действие. Яд ядовитых рыб действует на дыхательные и вазомоторные центры, не разрушается при кипячении. У некоторых рыб ядовита кровь (угри Muraena, Anguilla, Conger, минога, линь, тунец, карп и др.). Ядовитые свойства проявляются при инъекции кровяной сыворотки этих рыб; они пропадают при нагревании, под действием кислот и щелочей.

Отравления несвежей рыбой связаны с появлением в ней ядовитых продуктов жизнедеятельности гнилостных бактерий. Специфический же “рыбий яд” образуется в доброкачественной рыбе (преимущественно в осетровых и белорыбице) как продукт жизнедеятельности анаэробных бактерий Bacillus ichthyismi, близкой к В. botulinus. Действие яда проявляется при употреблении сырой, в том числе соленой рыбы.

Мне очень нравятся статьи о растениях и животных. Хотелось бы прочитать о четырехглазых рыбах.

Алеша Юрьев (г. Рязань).

Как и все позвоночные животные, рыбы имеют одну пару глаз, анатомически устроенных по единому принципу (роговица, хрусталик, стекловидное тело, сетчатка и др.). Хрусталик глаза рыбы, однако, отличается от хрусталика глаза человека, зверей и птиц гораздо более выпуклой, шарообразной формой. Это обусловлено тем, что глаз рыбы рассматривает предметы непосредственно в воде, коэффициент преломления световых лучей в которой совсем иной, чем в воздушной среде. Шарообразная форма хрусталика делает рыб гораздо более близорукими существами, чем наземные позвоночные животные. Между тем именно среди рыб встречаются представители с весьма необычным - двойным зрением. У таких рыб хрусталик глаза подобен бифокальным очкам, которыми пользуются некоторые люди. Верхние и нижние линзы таких очков имеют, как известно, разные диоптрии, что позволяет человеку хорошо видеть вдаль и, не меняя очков, читать напечатанный мелким шрифтом текст в газете или книге.

В лагунах Центральной Америки и северной части южно-американского континента обитают два вида рыб из отряда карпозубообразных. Этих сравнительно небольших рыб, длина которых не превышает 20-30 см, называют четырехглазками. Основную часть времени они проводят в верхнем слое воды. Медленно плавая, рыбы выставляют над водой половину глаз и таким образом одновременно наблюдают за тем, что происходит не только в воде, но и в воздухе. Это им удается делать благодаря тому, что каждый глаз поделен горизонтальной перегородкой пополам. На две части разделена не только роговица, но и сетчатка глаза. А фокусирующая линза - хрусталик - имеет не шаровидную, как у всех рыб, форму, а овальную. Верхняя часть его более плоская, а нижняя более выпуклая. Такой хрусталик дает на сетчатку четкое изображение предметов, находящихся как под водой, так и над ее поверхностью.

Четырехглазки - не единственные представители рыб со столь оригинально устроенными органами зрения. У тихоокеанского и атлантического побережий Америки встречаются "четырехглазые" рыбы из отряда окунеобразных, относящиеся к семейству чешуйчатых собачек - мексиканская мниерпа и галапагосская диалома. Имея весьма небольшие размеры (около 10 см), они замечательны тем, что каждый глаз у них также разделен пополам перегородкой. Однако перегородка расположена не горизонтально, как у четырехглазки из отряда карпозубообразных, а вертикально. И мексиканская мниерпа, и галапагосская диалома обитают в прибрежных водах, в узких углублениях скал, находящихся во время прилива под водой. Эти маленькие рыбки необычайно проворны и, когда наступает отлив, начинают прыгать по мокрым скалам в поисках заполненных водой расщелин. Спрятавшись в них и дожидаясь очередного прилива, они располагают свое тело вертикально и, выставив из воды часть головы, одновременно осматривают пространство под водой и над ее поверхностью. Таким образом они непрерывно следят за появлением в воде или в воздухе других живых существ, будь то объекты их питания или, наоборот, враги.

Зрение или способность к рецепции электромагнитного излучения определенного спектра играет важную роль в их жизни. Клетки сетчатки глаз рыбы по составу сходны с человеческими.

- конечно же, глаз, состоящий из шарообразного хрусталика, приближенного к плоской роговице и расположенный сбоку головы. Характерные особенности рыбьего зрения: близорукость; возможность видеть в нескольких направлениях одновременно.

Угол зрения рыб таков: около 150° по вертикали и до 170° по горизонтали.
Зрение рыбы монокулярно: каждый глаз видит самостоятельно. Для того чтобы разглядеть что-либо обеими глазами, рыба быстро поворачивается. Двумя глазами она видит очень узкую конусообразную площадь, находящуюся впереди.

Многие рыбы имеют выступающий из отверстия зрачка хрусталик, что увеличивает поле зрения. Спереди монокулярное зрение каждого глаза перекрывается, и образуется на 15–30° бинокулярное зрение. Основной недостаток монокулярного зрения - неточная оценка расстояния.
Глаз рыбы имеет три оболочки: 1) склера (наружная); 2) сосудистая (средняя); 3) сетчатка, или ретина (внутренняя).

Наружная оболочка склера защищает глаз от механических повреждений, образуя прозрачную плоскую роговицу.
Сосудистая оболочка обеспечивает кровоснабжение глаза. В передней части глаза сосудистая оболочка переходит в радужную, в которой в свою очередь располагается зрачок, с входящим в него хрусталиком.
В сетчатке находятся: 1) пигментный слой (пигментные клетки); 2) светочувствительный слой (светочувствительные клетки: палочки и колбочки); 3) два слоя нервных клеток; палочки и колбочки для восприятия света в темноте и цветоразличения.

По количеству этих палочек и колбочек (светочувствительных клеток) в сетчатке рыб делят на дневных и сумеречных.

Еще одна характерная особенность зрения рыбы: оно цветовое. Ученые установили, что некоторые виды рыб различают до 20 цветов. У хищников цветовое зрение развито лучше, чем у травоядных. Многие рыбы воспринимают диапазон световых волн даже шире чем человек. Рыба может частично видеть и ультрафиолетовое излучение. В целом же, спектр видимого излучения света у разных видов рыб различен.

В среднем, рыба хорошо видит в прозрачной, освещенной солнцем воде, однако некоторые виды приспособились видеть в сумерках и в мутной воде. Такие виды рыб имеют особое строение глаз. Однако и в прозрачной воде максимальная видимость у рыбы - 10-14 метров. Наиболее точная видимость - в пределах 2 метров.

Преломление световых волн в воде - достаточно сложная тема, и на разных глубинах преобладают разные волны спектра света, поэтому у рыбы развивается восприимчивость к различным видам спектральных волн света. Но в среднем, диапазон восприятия световых волн рыб составляет 400–750 нм.

В отличие от человека, зрение не играет главную роль среди органов чувств рыбы. Поврежденные или отсутствующие органы зрения рыбы (например, при ) неплохо компенсируются другими органами: боковой линией, органами обоняния, вкуса.

Рыбы, живущие в особых условиях, например, глубоководные виды, часто имеют отличное от большинства рыб строение органов зрения, либо не имеют их вообще. Оказавшись на воздухе, рыба не видит почти ничего.

Понравилась статья? Поделиться с друзьями: