Физиологические свойства сердечной мышцы. Сокращение сердечной мышцы Сердечная мускулатура

Сердечная мышца обладает следующими физиологическими свойствами: возбудимостью, проводимостью, сократимостью и автоматией.

Возбудимость – это способность (или свойство) реагировать на раздражение, т.е. возбуждаться. Это свойство характерно для всех возбудимых тканей (нервов, мышц, железистых клеток), но разные ткани обладают разной возбудимостью (этот вопрос более подробно рассматривается в разделе «физиология возбудимых тканей»). Любая возбудимая ткань при возбуждении меняет свою возбудимость и имеет следующие фазы: абсолютная рефрактерность (отсутствие возбудимости), относительная рефрактерность (возбудимость ниже нормы), супернормальность или экзальтация (повышенная возбудимость). Продолжительность этих фаз у разных тканей разная, и имеет, как правило, важное функциональное назначение. Так, у нервов и скелетных мышц эти фазы намного короче, чем у сердечной и гладких мышц.

Ниже приводятся схематические изображения (рис 1) изменения возбудимости в разные периоды одиночного сокращения сердечной (пунктирная линия) и скелетной (сплошная линия) мышц

Рис.1. 1-латентный период, 2-период сокращения, 3-период расслабления

а) абсолютная рефрактерность

б) относительная рефрактерность

в) фаза супернормальности (экзальтации)

а также сопоставление (рис 2) фаз рефрактерности с фазами потенциала действия скелетной (А) и сердечной (Б) мышц.

Рис. 2. 1 - латентный период, 2 - фаза деполяризации, 3 - фаза реполяризации, 3а - плато (медленная деполяризация или начальная реполяризация); а) - абсолютная рефрактерность, б) относительная рефрактерность, в) фаза супернормальности (или фаза экзальтации

Во время фазы абсолютной рефрактерности ткань не возбудима, во время относительной рефрактерности возбудимость снижена, и она не восстановилась еще до нормы. Наличие продолжительной абсолютной рефрактерности у сердечной мышцы является причиной, предохраняющей сердце от повторного возбуждения (а стало быть, сокращения) в период систолы. Сердце приобретает способность к повторному сокращению на приходящий импульс во время диастолы, т.е. в фазу относительной рефрактерности, в этот период возникает так называемая экстрасистола (дополнительная систола). После экстрасистолы следует компенсаторная пауза за счет выпадения одного естественного сокращения, так как очередной импульс попадает на абсолютную рефрактерность экстрасистолы. Это явление чаще наблюдается при желудочковой экстрасистолии и тахикардии. Экстрасистолы по происхождению могут быть наджелудочковыми (из синусного узла, предсердий или атриовентрикулярного узла) и желудочковыми. Экстрасистолия, как правило, сопровождается аритмией, которая при некоторых заболеваниях сердца (инфаркт миокарда, гипокалиемия, растяжение желудочков и т.д.) может переходить в фибрилляцию (трепетание и мерцание предсердий или желудочков). Наибольшая опасность возникновения этих явлений наблюдается тогда, когда экстрасистола попадает в так называемый «уязвимый период». Таким уязвимым местом или периодом считается фаза реполяризации желудочков и соответствует восходящей части зубца Т на ЭКГ. При наличии эктопических зон вероятность возникновения фибрилляции желудочков многократно возрастает.

Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий, а вставочные диски между кардиомиоцитами не препятствуют проведению возбуждения, и происходит одновременное возбуждение всех клеток. Поэтому следующей особенностью возбудимости сердечной мышцы является то, что сердце работает по закону «все или ничего», тогда как скелетная мышца и нервы не подчиняются этому закону (лишь отдельные волокна скелетных мышц и нервов функционируют по закону « все или ничего»).

Автоматизм . Ритмические сокращения сердца обусловлены импульсами, генерируемыми в самом сердце. Сердце лягушки, помещенное в рингеровский (физиологический) раствор может сокращаться в прежнем ритме длительное время. Изолированное сердце теплокровных животных также может сокращаться длительно, но требуется соблюдение ряда условий: пропускать (перфузировать) Рингер-Локковский раствор под давлением через сосуды сердца (канюля в аорте), tº раствора = 36-37º, через раствор пропускать кислород или просто воздух (аэрация), в растворе должна содержаться глюкоза. В норме ритмические импульсы образуются только специализированными клетками водителя ритма сердца (пейсмекера), которым является сино-атриальный узел (СА узел). Однако в условиях патологии остальные участки проводящей системы сердца способны самостоятельно генерировать импульсы. Явления автоматизма целиком и полностью зависят от проводящей системы сердца, т.е. она выполняет также функцию проведения, обеспечивает, таким образом, свойство проводимости. Как распространяется возбуждение по проводящей системе сердца к рабочему миокарду? От пейсмекера – синоатриального узла, который расположен в стенке правого предсердия у места впадения в него верхней полой вены, возбуждение вначале распространяется по рабочему миокарду обоих предсердий. Единственным путем дальнейшего распространения возбуждения является атриовентрикулярный узел. Здесь происходит небольшая задержка – 0,04-0,06 сек (атриовентрикулярная задержка) проведения возбуждения. Эта задержка имеет принципиально большое значение для последовательного (не одновременного) сокращения предсердий и желудочков. Благодаря этому кровь из предсердий может поступить в желудочки. Если бы не было этой задержки, то происходило бы одновременное сокращение предсердий и желудочков, а так как последние развивают значительное полостное давление, то кровь не смогла бы поступить из предсердий в желудочки. Пучок Гиса, его левая и правая ножки и волокна Пуркинье проводят импульсы со скоростью примерно 2 м/с, и различные участки желудочков возбуждаются синхронно. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с. Средний ритм сердца в норме, а стало быть, количество импульсов в синоатриальном узле составляет 60-80 в 1 мин. При блокаде передачи импульсов от СА узла пейсмекерную функцию берет на себя АВ-узел с ритмом около 40-50 в 1 мин. Если будет выключен и этот узел, то пейсмекером становится пучок Гиса, при этом частота сердечных сокращений будет 30-40 в минуту. Но даже волокна Пуркинье могут спонтанно возбуждаться (20 в 1 мин.) при выпадении функции пучков Гиса.

СА-узел называют номотопным (нормально расположенным) центром автоматии, а очаги возбуждения в остальных отделах проводящей системы сердца – гетеротопными (ненормально расположенными) центрами. Эти ритмы возникают не за счет основного водителя (СА-узла) и они носят название «заместительных ритмов». Кроме перечисленных гетеротопных центров в патологии (инфаркт миокарда, гипокалиемия, растяжение) могут появляться эктопические водители ритма сердца. Они локлизуются за пределами проводящей системы сердца. При полном исчезновении автоматизма сердца применяются искусственные водители ритма сердца, т.е. искусственное электрическое раздражение желудочков либо путем подачи тока через интактную грудную клетку, либо через имплантированные электроды. Такое искусственное раздражение сердца иногда применяется годами (миниатюрные водители ритма сердца, расположенные под кожей и работающие от батареек). Способность сердца возбуждаться за счет автоматизма имело большое значение для разработки стратегии и тактики хирургической пересадки сердца. Первоначально эти исследования были проведены Кулябко, Неговским и Синицыным.

СОКРАТИМОСТЬ. Сердце сокращается по типу одиночного сокращения, т.е. одно сокращение на одно раздражение. Скелетная мышца сокращается тетанически. Такая особенность сердечной мышцы обусловлена продолжительной абсолютной рефрактерностью, которая занимает всю систолу. Сокращение предсердий и желудочков имеет последовательный характер. Сокращение предсердий начинается в области устьев полых вен, и кровь движется только в одном направлении, а именно в желудочки через предсердно-желудочковые отверстия. В это время устья полых вен сжимаются, и кровь поступает в желудочки. В момент диастолы желудочков атриовентрикулярные клапаны открываются. При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки этих клапанов. Клапаны не могут открыться в сторону предсердий, т.к. этому препятствуют сухожильные нити, которые прикрепляются к сосочковым мышцам. Повышение давления в желудочках при их сокращении приводит к изгнанию крови из правого желудочка в легочную артерию, а из левого желудочка – в аорту. В устьях этих сосудов имеются полулунные клапаны. Эти клапаны расправляются в момент диастолы желудочков за счет обратного тока крови в сторону желудочков. Эти клапаны выдерживают большое давление (особенно аортальный) и не пропускают кровь из аорты и легочной артерии в желудочки. Во время диастолы предсердий и желудочков давление в камерах сердца падает и кровь из вен поступает в предсердия, а затем в желудочки.

Ответы и объяснения

Сердечная мышца относится к возбудимым тканям организма.Возбудимость-это способность тканей давать процесс возбуждение.Возбуждение-это основа функций.Одно из главных особенностей сердечной мышцы-это наличие особых контактов между ее клетками.Эти контакты образованы участками мембран прилегающих соседних клеток и, благодаря их особым свойством, позволяют электрическому току распространяться от клетки к клетке.

Сердце состоит из двух основных групп сердечных клеток: клетки рабочего миокарда, основная роль которых заключается в ритмических сокращениях; и клетки проводящей системы;

1) синусового узла, находящегося в правом предсердии

2) антиовентрикулярного узла, нах-ся на границе предсердий и желудочков;

3) непосредственно проводящей системы;

  • Комментарии
  • Отметить нарушение
  • Познаватель7
  • светило науки

Сердце-это мышца,состоящая из 4 камер (у человека),2 желудочка и 2 предсердия.Этот орган постоянно сокращается и выталкивает кровь.

За 1 сокращение сердце качает 80 мл,за минуту качается около 5 литров,но когда человек работает кол-во сокращений увеличивается.

Особенности серца состоят:

Высокой выносливости и хорошего кровоснабжения.

3.2. Строение сердца. Свойства сердечной мышцы

Сердце расположено в грудной полости в составе органов средостения, смещено влево. Положение и масса сердца зависят от типа телосложения, формы грудной клетки, пола и возраста человека. У женщин в среднем масса сердца меньше (250 г), чем у мужчин (300 г). У спортсменов и людей, занятых физическим трудом, размеры сердца больше, чем у людей, не связанных с большими физическими нагрузками.

Сердце представляет собой полый мышечный орган, разделенный внутри на четыре полости: правое и левое предсердия, правый и левый желудочки. Стенка сердца состоит из трех слоев: внутренний эндотелиальный слой с клапанами – эндокард, средний мышечный слой – миокард и наружный соединительнотканный, покрытый однослойным эпителием – эпикард. Снаружи сердце покрыто околосердечной сумкой – перикардом. В полости между эпикардом и перикардом содержится небольшое количество серозной жидкости, которая уменьшает трение при сокращениях сердца. В левой половине сердца между предсердием и желудочком находится двустворчатый (митральный) клапан, в правой половине – трехстворчатый. В устье аорты есть полулунные клапаны, которые препятствуют возврату крови в желудочек. Средний слой стенки сердца (миокард) образован мышечными клетками – кардиомиоцитами. В предсердиях миокард более тонкий, в желудочках – более толстый (особенно в левом желудочке). Миокард по строению относится к поперечно-полосатым мышцам, но имеет ряд особенностей. Кардиомиоциты плотно соединены друг с другом, образуя функционально единую ткань – синцитий, благодаря чему осуществляется быстрое проведение возбуждения и одновременное сокращение всего сердца. Проведение возбуждения в миокарде ко всем рабочим кардиомиоцитам выполняет проводящая система сердца, которая образована атипичными мышечными клетками.

Благодаря этим клеткам, миокард обладает специфическими свойствами:

1) автоматия – способность атипичных мышечных клеток

проводящей системы генерировать импульсы без каких-либо внешних воздействий;

2) проводимость – способность проводящей системы к передаче возбуждения;

3) возбудимость – способность клеток мышцы сердца возбуждаться под действием импульсов, которые приходят по проводящей системе сердца;

4) сократимость – способность сокращаться под действием этих импульсов.

Импульсы возникают в так называемом водителе ритма (пейсмейкере), который располагается в правом предсердии в устье полых вен – синоатриальный узел или узел первого порядка . Он генерирует импульсы с частотой 60 – 80 сокращений в мин (60 – 80 имп/мин). Узел второго порядка находится в предсердно-желудочковой перегородке – атриовентрикулярный узел . Скорость проведения возбуждения от узла первого порядка к узлу второго порядка составляет 1 м/с, однако в узле второго порядка скорость проведения падает до 0,02 – 0,05 м/с, в результате чего формируется интервал между сокращениями предсердий и сокращениями желудочков. От узла второго порядка начинается пучок Гиса , делящийся на правую и левую ножки, которые далее распадаются на волокна Пуркинье , непосредственно контактирующие с волокнами миокарда. В пучке Гиса скорость проведения достигает 5 м/с, и затем в волокнах Пуркинье скорость проведения опять уменьшается до 1 м/с. Ножки пучка Гиса могут генерировать сокращения с частотой 30 – 40 имп/мин. Отдельные волокна Пуркинье могут генерировать импульсы с частотой 20 сокращений в мин. Снижение способности к автоматии, начиная от основания сердца к верхушке, составляет так называемый убывающий градиент автоматии.

Особенности возбудимости и сократимости сердечной мышцы.

Важной особенностью возбудимости сердечной мышцы является наличие длительного рефрактерного периода , т.е. периода пониженной чувствительности к возбуждению, более длительного, чем в других поперечно-полосатых мышцах. Частота генерации возбуждения клетками проводящей системы и, соответственно, сокращений миокарда определяется длительностью рефрактерной фазы, возникающей после каждой систолы и составляющей в сердце около 0,3 с. Длительный рефрактерный период имеет для сердца важное биологическое значение, так как он предохраняет миокард от слишком частого повторного возбуждения и сокращения. Мышца сердца сокращается по закону «все или ничего», так как в ней есть тесные контакты между отдельными мышечными клетками – так называемые нексусы, или участки тесного контакта (общая часть мембран), в результате чего возбуждение беспрепятственно идет с одной клетки на другую. Миокард – это функционально единая система, поэтому возбуждение быстро охватывает всю мышцу и происходит одновременное сокращение всех мышечных клеток желудочков. Работа сердца прямо зависит от потребления кислорода. Доставка кислорода к тканям сердца выполняется по венечным артериям, которые отходят от аорты. Во время систолы желудочков заслонки перекрывают устья венечных артерий, не пропуская кровь к сердцу. При расслаблении желудочков синусы заполняются кровью, и заслонки перекрывают ей путь обратно в левый желудочек, одновременно открываются устья венечных артерий и кровь поступает к сердцу. Так как сердце нуждается в непрерывном поступлении достаточно больших количеств кислорода к клеткам, то закупорка венечных артерий приводит к тяжелым нарушениям работы сердца и быстрому развитию очагов омертвления (инфаркт миокарда). Отдав кислород, венозная кровь в стенке сердца собирается в передние сердечные вены и венозный синус, которые открываются в полость правого и левого предсердий.

Величина кровотока в сосудах желудочков во время их систолы снижается, поэтому поступление крови, доставка кислорода и питательных веществ к миокарду в основном обеспечивается в период диастолы. Частота сердечных сокращений увеличивается главным образом за счет сокращения диастолы, поэтому при учащении сердцебиений поступление кислорода к миокарду уменьшается.

Для продолжения скачивания необходимо собрать картинку:

Анатомия и физиология сердца: строение, функции, гемодинамика, сердечный цикл, морфология

Строение сердца любого организма имеет много характерных нюансов. В процессе филогенеза, то есть эволюции живых организмов к более сложным, сердце птиц, животных и человека приобретает четыре камеры вместо двух камер у рыб и трех камер у земноводных. Такое сложное строение наилучшим образом приспособлено для разделения потоков артериальной и венозной крови. Кроме этого, анатомия сердца человека подразумевает множество мельчайших деталей, каждая из которых выполняет свои строго определенные функции.

Сердце как орган

Итак, сердце является не чем иным, как полым органом, состоящим из специфической мышечной ткани, которая и осуществляет моторную функцию. Сердце располагается в грудной клетке за грудиной, больше слева, а продольная ось его направлена кпереди, влево и вниз. Спереди сердце граничит с легкими, почти полностью прикрываясь ими, оставляя лишь незначительную часть, непосредственно прилегающую к грудной клетке изнутри. Границы этой части по другому называются абсолютной сердечной тупостью, а определить их можно с помощью простукивания грудной стенки (перкуссии).

У людей с нормальной конституцией сердце имеет полугоризонтальное положение в грудной полости, у лиц с астенической конституцией (худощавых и высоких) - почти вертикальное, а у гиперстеников (плотных, коренастых, с большой мышечной массой) - почти горизонтальное.

Задняя стенка сердца прилегает к пищеводу и к крупным магистральным сосудам (к грудному отделу аорты, к нижней полой вене). Нижняя часть сердца расположена на диафрагме.

внешнее строение сердца

Возрастные особенности

Сердце человека начинает формироваться на третьей неделе внутриутробного периода и продолжается весь период вынашивания беременности, проходя стадии от однокамерной полости к четырехкамерному сердцу.

развитие сердца во внутриутробном периоде

Формирование четырех камер (двух предсердий и двух желудочков) происходит уже в первые два месяца беременности. Мельчайшие структуры полностью формируются к родам. Именно в первые два месяца сердце эмбриона наиболее уязвимо для негативного влияния некоторых факторов на будущую маму.

Сердце плода участвует в кровотоке по его организму, но отличается кругами кровообращения - у плода пока не работает собственное дыхание легкими, а «дышит» он через плацентарную кровь. В сердце плода существуют некоторые отверстия, позволяющие «выключать» легочной кровоток из кровообращения до родов. Во время родов, сопровождающихся первым криком новорожденного, и, следовательно, в момент повышения внутригрудного давления и давления в сердце ребенка, эти отверстия закрываются. Но это происходит далеко не всегда, и у ребенка они могут остаться, например, открытое овальное окно (не следует путать с таким пороком, как дефект межпредсердной перегородки). Открытое окно пороком сердца не является, и впоследствии, по мере роста ребенка, зарастает.

гемодинамика в сердце до и после рождения

Сердце новорожденного ребенка имеет округлую форму, а размеры его составляют 3-4 см в длину и 3-3.5 см в ширину. В первый год жизни ребенка сердце значительно увеличивается в размерах, причем больше в длину, чем в ширину. Масса сердца новорожденного ребенка составляет околограмм.

По мере роста и развития малыша сердце также растет, иногда значительно опережая развитие самого организма согласно возрасту. К 15 годам масса сердца возрастает почти в десять раз, а объем его увеличивается более, чем в пять раз. Наиболее интенсивно сердце растет до пяти лет, а затем в период полового созревания.

У взрослого человека размеры сердца составляют околосм в длину, и 8-10 см в ширину. Многие справедливо полагают, что размеры сердца каждого человека соответствуют размеру его сжатого кулака. Масса сердца у женщин составляет около 200 грамм, а у мужчин - околограмм.

После 25 лет начинаются изменения в соединительной ткани сердца, которая образует сердечные клапаны. Эластичность их уже не такая, как в детстве и юношестве, а края могут стать неровными. По мере взросления, а затем и старения человека изменения происходят во всех структурах сердца, а также в сосудах, его питающих (в коронарных артериях). Эти изменения могут приводить к развитию многочисленных кардиологических заболеваний.

Анатомические и функциональные особенности сердца

Анатомически сердце представляет собой орган, разделенный с помощью перегородок и клапанов на четыре камеры. «Верхние» две называются предсердиями (atrium), а «нижние» две - желудочками (ventriculum). Между правым и левым предсердиями располагается межпредсердная перегородка, а между желудочками - межжелудочковая. В норме эти перегородки не имеют в себе отверстия. Если же отверстия имеются, это приводит к смешиванию артериальной и венозной крови, и, соответственно, к гипоксии многих органов и тканей. Такие отверстия называются дефектами перегородок и относятся к порокам сердца.

базовое строение камер сердца

Границами между верхними и нижними камерами являются атрио-вентрикулярные отверстия - левое, прикрытое створками митрального клапана, и правое, прикрытое створками трикуспидального клапана. Целостность перегородок и правильная работа клапанных створок предотвращают смешивание кровяных потоков в сердце, и способствуют четкому однонаправленному движению крови.

Предсердия и желудочки отличаются - предсердия имеют меньшие размеры, нежели желудочки, и меньшую толщину стенок. Так, стенка предсердий составляет порядка всего трех миллиметров, стенка правого желудочка - около 0.5 см, а левого - около 1.5 см.

У предсердий имеются небольшие выступы – ушки. Они обладают незначительной присасывающей функцией для лучшего нагнетания крови в полость предсердий. В правое предсердие возле его ушка впадает устье полой вены, а в левое – легочные вены в количестве четырех (реже пяти). От желудочков отходят легочная артерия (называемая чаще легочным стволом) справа и луковица аорты слева.

строение сердца и входящих в него сосудов

Изнутри верхние и нижние камеры сердца тоже отличаются и имеют свои особенности. Поверхность предсердий является более гладкой, чем желудочков. От клапанного кольца между предсердием и желудочком берут начало тонкие соединительнотканные клапаны - двустворчатый (митральный) слева и трехстворчатый (трикуспидальный) справа. Другим краем створки обращены внутрь желудочков. Но для того, чтобы они не свисали свободно, их как бы поддерживают тонкие сухожильные нити, называемые хордами. Они словно пружинки, растягиваются при смыкании створок клапанов и сжимаются при раскрытии створок. Хорды берут начало от сосочковых мышц из стенки желудочков - в составе трех в правом и двух в левом желудочке. Именно поэтому желудочковая полость имеет неровную и бугристую внутреннюю поверхность.

Функции предсердий и желудочков также различаются. В связи с тем, что предсердиям кровь необходимо проталкивать в желудочки, а не в более крупные и длинные сосуды, преодолевать сопротивление мышечной ткани им приходится меньшее, поэтому предсердия меньше по размеру и стенки их тоньше, нежели у желудочков. Желудочки проталкивают кровь в аорту (слева) и в легочную артерию (справа). Условно сердце разделяется на правую и левую половину. Правая половина служит для потока исключительно венозной крови, а левая – для артериальной. Схематично «правое сердце» обозначается синим цветом, а «левое сердце» - красным. В норме эти потоки никогда не смешиваются.

гемодинамика в сердце

Один сердечный цикл длится около 1 секунды и осуществляется следующим образом. В момент наполнения кровью предсердий стенки их расслабляются – происходит диастола предсердий. Открыты клапаны полых вен и легочных вен. Трикуспидальный и митральный клапаны закрыты. Затем предсердные стенки напрягаются и выталкивают кровь в желудочки, трикуспидальный и митральный клапаны открыты. В этот момент происходит систола (сокращение) предсердий и диастола (расслабление) желудочков. После принятия крови желудочками трикуспидальный и митральный клапаны закрываются, а клапаны аорты и легочной артерии открываются. Далее сокращаются уже желудочки (систола желудочков), а предсердия вновь наполняются кровью. Наступает общая диастола сердца.

Основная функция сердца сводится к насосной, то есть к проталкиванию определенного кровяного объема в аорту с такими давлением и скоростью, чтобы кровь была доставлена к самым отдаленным органам и к мельчайшим клеточкам организма. Причем в аорту проталкивается артериальная кровь с высоким содержанием кислорода и питательных веществ, поступающая в левую половину сердца из сосудов легких (притекает к сердцу по легочным венам).

Венозная кровь, с низким содержанием кислорода и других веществ, собирается от всех клеток и органов с систему полых вен, и притекает в правую половину сердца из верхней и нижней полых вен. Далее венозная кровь выталкивается из правого желудочка в легочную артерию, а затем в легочные сосуды с целью осуществления газообмена в альвеолах легких и с целью обогащения кислородом. В легких артериальная кровь собирается в легочные венулы и вены, и вновь притекает в левую половину сердца (в левое предсердие). И так регулярно сердце осуществляет перекачивание крови по организму с частотойударов в минуту. Данные процессы обозначаются понятием «кругов кровообращения». Их два – малый и большой:

  • Малый круг включает в себя поток венозной крови из правого предсердия через трикуспидальный клапан в правый желудочек – затем в легочную артерию - далее в артерии легких – обогащение крови кислородом в легочных альвеолах – поток артериальной крови в мельчайшие вены легких – в легочные вены – в левое предсердие.
  • Большой круг включает поток артериальной крови из левого предсердия посредством митрального клапана в левый желудочек – через аорту в артериальное русло всех органов – после газообмена в тканях и органах кровь становится венозной (с большим содержанием углекислого газа вместо кислорода) – далее в венозное русло органов – в систему полых вен - в правое предсердие.

Видео: анатомия сердца и сердечный цикл кратко

Морфологические особенности сердца

Для того, чтобы волокна сердечной мышцы сокращались синхронно, к ним необходимо подвести электрические сигналы, которые и возбуждают волокна. В этом заключается другая способность сердца - проводимость.

Проводимость и сократимость возможны за счет того, что сердце в автономном режиме генерирует в себе электричество. Данные функции (автоматизм и возбудимость) обеспечиваются особенными волокнами, которые являются составной частью проводящей системы. Последняя представлена электрически активными клетками синусового узла, атрио-вентрикулярного узла, пучком Гиса (с двумя ножками - правой и левой), а также волокнами Пуркинье. В том случае, когда у пациента поражение миокарда затрагивает эти волокна, развиваются нарушения сердечного ритма, по-другому называемые аритмиями.

В норме электрический импульс зарождается в клетках синусового узла, который располагается в зоне ушка правого предсердия. За короткий промежуток времени (около половины миллисекунды) импульс распространяется по миокарду предсердий, а далее попадает в клетки атрио-вентрикулярного соединения. Обычно сигналы передаются к АВ-узлу по трем основным трактам – пучкам Венкенбаха, Тореля и Бахмана. В клетках АВ-узла время передачи импульса удлиняется домиллисекунд, а затем импульсы попадают посредством правой и левой ножек (а также передней и задней ветвей левой ножки) пучка Гиса к волокнам Пуркинье, и в итоге, к рабочему миокарду. Частота передачи импульсов по всем проводящим путям равна частоте сердечных сокращений и составляетимпульсов в минуту.

Итак, миокард, или сердечная мышца является средней оболочкой в стенке сердца. Внутренняя и внешняя оболочки представляют собой соединительную ткань, и называются эндокардом и эпикардом. Последний слой входит в состав перикардиальной сумки, или сердечной «сорочки». Между внутренним листком перикарда и эпикардом образуется полость, заполненная очень незначительным количеством жидкости, для обеспечения лучшего скольжения листков перикарда в моменты сердечных сокращений. В норме объем жидкости составляет до 50 мл, превышение данного объема может свидетельствовать о перикардите.

строение сердечной стенки и оболочки

Кровоснабжение и иннервация сердца

Несмотря на то, что сердце является насосом по обеспечению всего организма кислородом и питательными веществами, само оно тоже нуждается в артериальной крови. В связи с этим вся стенка сердца имеет хорошо развитую артериальную сеть, которая представлена разветвлением коронарных (венечных) артерий. Устья правой и левой венечных артерий отходят от корня аорты и подразделяются на ветви, проникающие в толщу сердечной стенки. Если эти важнейшие артерии забиваются тромбами и атеросклеротическими бляшками, у пациента разовьется инфаркт, и орган уже не сможет выполнять свои функции в полном объеме.

расположение коронарных артерий, кровоснабжающих сердечную мышцу (миокард)

На то, с какой частотой и силой бьется сердце, оказывают влияние нервные волокна, отходящие от важнейших нервных проводников - блуждающего нерва и симпатического ствола. Первые волокна обладают способностью замедлять частоту ритма, последние – увеличивать частоту и силу сердцебиения, то есть действуют подобно адреналину.

В заключение необходимо отметить, что анатомия сердца может иметь какие-либо отклонения у отдельных пациентов, поэтому определить норму или патологию у человека способен только врач после проведения обследования, способного наиболее информативно визуализировать сердечно-сосудистую систему.

Сердечная мышца человека, ее особенности и функции

Сердце представляет собой полый орган. Его размер примерно с кулак человека. Сердечная мышца формирует стенки органа. В нем присутствует перегородка, разделяющая его на левую и правую половины. В каждой из них сеть желудочек и предсердие. Направление движения крови в органе контролируется посредством клапанов. Далее рассмотрим подробнее свойства сердечной мышцы.

Общие сведения

Сердечная мышца – миокард – составляет основную часть массы органа. Она состоит из трех типов ткани. В частности, выделяют: атипический миокард проводящей системы, волокна предсердия и желудочков. Размеренное и координированное сокращение сердечной мышцы обеспечивается проводящей системой.

Строение

Сердечная мышца отличается сетчатой структурой. Она формируется из волокон, переплетенных в сеть. Связи между волокнами устанавливаются за счет присутствия боковых перемычек. Таким образом, сеть представлена в виде узкопетлистого синцития. Между волокнами сердечной мышцы присутствует соединительная ткань. Она отличается рыхлой структурой. Кроме этого, волокна обвиты густой сетью капилляров.

Свойства сердечной мышцы

В структуре присутствуют вставочные диски, представленные в виде мембран, отделяющих клетки волокон друг от друга. Здесь следует отметить важные особенности сердечной мышцы. Отдельные кардиомиоциты, присутствующие в структуре в большом количестве, соединены друг с другом параллельно и последовательно. Клеточные мембраны сливаются так, что формируют щелевые контакты высокой проницаемости. Через них беспрепятственно диффундируют ионы. Таким образом, одна из особенностей миокарда состоит в наличии свободного перемещения ионов по внутриклеточной жидкости по ходу всего миокардиального волокна. Это обеспечивает беспрепятственное распределение потенциалов действия от одной клетки к другой сквозь вставочные диски. Из этого следует, что сердечная мышца – это функциональное объединение огромного количества клеток, имеющих тесную взаимосвязь друг с другом. Она настолько сильна, что при возбуждении только одной клетки провоцирует распространение потенциала на все остальные элементы.

Миокардиальные синцития

В сердце их два: предсердный и желудочковый. Все отделы сердца отделены друг от друга фиброзными перегородками с отверстиями, снабженными клапанами. Непосредственно через ткань стенок возбуждение от предсердия к желудочку перейти не может. Передача осуществляется посредством специального атриовентрикулярного пучка. Его диаметр – несколько миллиметров. Состоит пучок из волокон проводящей структуры органа. Присутствие в сердце двух синцитий способствует тому, что предсердия сокращаются раньше желудочков. Это, в свою очередь, имеет важнейшее значение для обеспечения эффективной насосной деятельности органа.

Болезни миокарда

Работа сердечной мышцы может нарушаться вследствие различных патологий. В зависимости от провоцирующего фактора, выделяют специфические и идиопатические кардиомиопатии. Болезни сердца могут быть также врожденными и приобретенными. Существует еще одна классификация, в соответствии с которой различают рестриктивную, дилатационную, конгестивную и гипертрофическую кардиомиопатии. Рассмотрим их вкратце.

Гипертрофическая кардиомиопатия

На сегодняшний день специалистами выявлены мутации генов, провоцирующие данную форму патологии. Для гипертрофической кардиомиопатии характерно утолщение миокарда и изменение его структуры. На фоне патологии мышечные волокна увеличиваются в размерах, «скручиваются», приобретая странные формы. Первые симптомы заболевания отмечаются в детском возрасте. Основными признаками гипертрофической кардиомиопатии считаются болезненность в груди и одышка. Также наблюдается неравномерность сердечного ритма, на ЭКГ обнаруживаются изменения в сердечной мышце.

Конгестивная форма

Это достаточно распространенный тип кардиомиопатии. Как правило, заболевание возникает у мужчин. Распознать патологию можно по признакам сердечной недостаточности и нарушениям в сердечном ритме. У некоторых пациентов отмечается кровохарканье. Патологию также сопровождает боль в районе сердца.

Дилатационная кардиомиопатия

Эта форма заболевания проявляется в виде резкого расширения во всех камерах сердца и сопровождается снижением сократительной способности левого желудочка. Как правило, дилатационная кардиомиопатия возникает в сочетании с гипертонической болезнью, ИБС, стенозом в аортальном отверстии.

Рестриктивная форма

Кардиомиопатия этого типа диагностируется крайне редко. Причиной патологии является воспалительный процесс в сердечной мышце и осложнения после вмешательства на клапанах. На фоне заболевания происходит перерождение миокарда и его оболочек в соединительную ткань, отмечается замедленное наполнение желудочков. У пациента отмечается одышка, быстрая утомляемость, пороки клапанов и сердечная недостаточность. Крайне опасной рестриктивная форма считается для детей.

Как укрепить сердечную мышцу?

Существуют различные способы это сделать. Мероприятия включают в себя коррекцию режима дня и питания, упражнения. В качестве профилактики после консультации с врачом можно начать принимать ряд препаратов. Кроме этого, есть и народные методы укрепления миокарда.

Физическая активность

Она должна быть умеренной. Физическая активность должна стать неотъемлемым элементом жизни любого человека. При этом нагрузка должна быть адекватной. Не стоит перегружать сердце и истощать организм. Оптимальным вариантом считаются спортивная ходьба, плавание, езда на велосипеде. Упражнения рекомендуется проводить на свежем воздухе.

Ходьба

Она превосходно подходит не только для укрепления сердца, но и для оздоровления всего организма. При ходьбе задействована практически вся мускулатура человека. При этом сердце дополнительно получает умеренную нагрузку. По возможности, особенно в молодом возрасте, стоит отказаться от лифта и преодолевать высоту пешком.

Образ жизни

Укрепление сердечной мышцы невозможно без корректировки режима дня. Для улучшения деятельности миокарда необходимо отказаться от курения, дестабилизирующего давление и провоцирующего сужение просвета в сосудах. Кардиологи также не рекомендуют увлекаться баней и сауной, поскольку пребывание в парной существенно увеличивает сердечные нагрузки. Необходимо также позаботиться и о нормальном сне. Спать следует ложиться вовремя и отдыхать достаточное количество часов.

Диета

Одним из важнейших мероприятий в вопросе укрепления миокарда считается рациональное питание. Следует ограничить количество соленой и жирной пищи. В продуктах должны присутствовать:

  • Магний (бобовые, арбузы, орехи, гречка).
  • Калий (какао, изюм, виноград, абрикосы, кабачки).
  • Витамины Р и С (клубника, черная смородина, перец (сладкий), яблоки, апельсины).
  • Йод (капуста, творог, свекла, морепродукты).

Негативное воздействие на деятельность миокарда оказывает холестерин в высоких концентрациях.

Психоэмоциональное состояние

Укрепление сердечной мышцы может осложняться различными неразрешенными проблемами личного либо рабочего характера. Они могут спровоцировать перепады давления и нарушения ритма. Следует по возможности избегать стрессовых ситуаций.

Препараты

Существует несколько средств, способствующих укреплению миокарда. К ним, в частности, относят такие препараты, как:

  • «Рибоксин». Его действие направлено на стабилизацию ритма, усиление питания мышцы и коронарных сосудов.
  • «Аспаркам». Этот препарат представляет собой магниево-калиевый комплекс. Благодаря приему средства нормализуется электролитный обмен, устраняются признаки аритмии.
  • Родиола розовая. Это средство улучшает сократительную функцию миокарда. При приеме данного препарата следует соблюдать осторожность, поскольку он обладает способностью к возбуждению нервной системы.

Сердечная мышца человека

Физиологические свойства сердечной мышцы

Кровь может выполнять свои многочисленные функции, только находясь в постоянном движении. Обеспечение движения крови является главной функцией сердца и сосудов, формирующих кровеносную систему. Сердечно-сосудистая система совместно с кровью участвует также в транспорте веществ, терморегуляции, реализации иммунных реакций и гуморальной регуляции функций организма. Движущая сила кровотока создастся за счет работы сердца, которое выполняет функцию насоса.

Способность сердца сокращаться в течение всей жизни без остановки обусловлена рядом специфических физических и физиологических свойств сердечной мышцы. Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен интенсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Физические свойства

Растяжимость - способность увеличивать длину без нарушения структуры под влиянием растягивающей силы. Такой силой является кровь, наполняющая полости сердца во время диастолы. От степени растяжения мышечных волокон сердца в диастолу зависит сила их сокращения в систолу.

Эластичность - способность восстанавливать исходное положение после прекращения действия деформирующей силы. Эластичность сердечной мышцы является полной, т.е. она полностью восстанавливает исходные показатели.

Способность развивать силу в процессе сокращения мышцы.

Физиологические свойства

Сокращения сердца происходят вследствие периодически возникающих процессов возбуждения в сердечной мышце, которая обладает рядом физиологических свойств: автоматизмом, возбудимостью, проводимостью, сократимостью.

Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизм.

В сердце различают сократительную мускулатуру, представленную поперечно-полосатой мышцей, и атипическую, или специальную ткань, в которой возникает и проводится возбуждение. Атипическая мышечная ткань содержит малое количество миофибрилл, много саркоплазмы и не способна к сокращению. Она представлена скоплениями в определенных участках миокарда, которые образуют проводящую систему сердца, состоящую из синоатриального узла, располагающегося на задней стенке правого предсердия у места впадения полых вен; атриовентрикулярного, или предсердно-желудочкового узла, находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками; предсердно-желудочкового пучка (пучка Гиса), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, разветвляется на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синоатриальныи узел является водителем ритма первого порядка. В нем возникают импульсы, которые определяют частоту сокращений сердца. Он генерирует импульсы со средней частотойимпульсов в 1 мин.

Атриовентрикулярный узел - водитель ритма второго порядка.

Пучок Гиса - водитель ритма третьего порядка.

Волокна Пуркинье - водители ритма четвертого порядка. Частота возбуждения, возникающая в клетках волокон Пуркинье, очень низкая.

В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.

Однако и они обладают автоматизмом, только в меньшей степени, и этот автоматизм проявляется лишь при патологии.

В области синоатриального узла обнаружено значительное число нервных клеток, нервных волокон и их окончаний, которые образуют здесь нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Возбудимость сердечной мышцы - способность клеток миокарда при действии раздражителя приходить в состояние возбуждения, при котором изменяются их свойства и возникает потенциал действия, а затем сокращение. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в ней необходим более сильный раздражитель, чем для скелетной. При этом величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и др.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Уровень возбудимости сердечной мышцы в разные периоды сокращения миокарда меняется. Так, дополнительное раздражение сердечной мышцы в фазу ее сокращения (систолу) не вызывает нового сокращения даже при действии сверхпорогового раздражителя. В этот период сердечная мышца находится в фазе абсолютной рефрактерности. В конце систолы и начале диастолы возбудимость восстанавливается до исходного уровня - это фаза относительной рефрактерное/пи. За этой фазой следует фаза экзальтации, после которой возбудимость сердечной мышцы окончательно возвращается к исходному уровню. Таким образом, особенностью возбудимости сердечной мышцы является длительный период рефрактерности.

Проводимость сердца - способность сердечной мышцы проводить возбуждение, возникшее в каком-либо участке сердечной мышцы, к другим ее участкам. Возникнув в синоатриальном узле, возбуждение распространяется по проводящей системе на сократительный миокард. Распространение этого возбуждения обусловлено низким электрическим сопротивлением нексусов. Кроме того, проводимости способствуют специальные волокна.

Волны возбуждения проводятся по волокнам сердечной мышцы и атипической ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по атипической ткани сердца - 2-4 м/с. При прохождении возбуждения через атриовентрикулярный узел возбуждение задерживается на 0,02- 0,04 с - это атриовентрикулярная задержка, обеспечивающая координацию сокращения предсердий и желудочков.

Сократимость сердца - способность мышечных волокон укорачиваться или изменять свое напряжение. Она реагирует на раздражители нарастающей силы по закону «все или ничего». Сердечная мышца сокращается по типу одиночного сокращения, так как длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения ([[|систола]]), фазу расслабления (диастола). Благодаря способности сердечной мышцы сокращаться только по типу одиночного сокращения сердце выполняет функцию насоса.

Первыми сокращаются мышцы предсердий, затем слой мышц желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Сердце представляет собой две половинки (левую и правую), каждая из которых в свою очередь состоит из предсердия и желудочка. Левая половинка сердца производит нагнетание артериальной крови, а правая – венозной. В связи с этим, сердечная мышца левой половины значительно больше и толще правой. Мышцы предсердий и желудочков разделены между собой фиброзными кольцами, имеющими специальные клапаны: двухстворчатый - у левой сердечной половины, и трехстворчатый – у правой. Эти клапаны, в момент сердечных сокращений не допускают возврата крови в предсердие. На выходе из аорты и легочной артерии размещаются клапаны, напоминающие визуально полумесяц. Они не допускают возврата крови в желудочки в период общей диастолы сердца.

Сердечная мышца относится к поперечнополосатой мышечной ткани. Именно поэтому она имеет те же самые свойства, что и мышцы скелета. Волокна, из которого они состоят это в основном - сарколеммы, миофибриллы и саркоплазмы.

Посредством сердца обеспечивается циркуляция крови по кровеносным сосудам. Ритмичное сокращение мышц предсердий, а также желудочков, чередуется с их расслаблением. Периодичная смена систолы и диастолы и составляет основной цикл работы сердца. Мышца сердца работает достаточно ритмично, и обеспечивается это специальной системой возбуждения, находящейся в разных сердечных отделах.

Физиологические особенности сердечной мышцы

Возбудимостью миокарда называется способность реагировать на воздействие термических, электрических, химических или механических раздражителей. Сокращение и возбуждение сердечной мышцы происходит в тот момент, когда раздражитель достигает своей максимальной силы. Возбуждения низкого воздействия не эффективны, а чрезмерные - не изменяют силы сокращения миокарда.

Возбужденная сердечная мышца на короткий промежуток времени утрачивает способность реагировать, на поступающие дополнительно раздражители и импульсы. Такая реакция называется рефрактерностью. Раздражители, которые с силой воздействуют на мышцу в период ее рефрактерности, провоцируют внеочередное сокращение сердца, называемое экстрасистолой.

В различных отделах сердца скорость возбуждения отличается. Характерной особенностью процесса возбуждения в сердечной мышце является ее потенциал действия, возникая в одном участке мышечной ткани, он постепенно распространяется и на соседние ее участки.

Возбудимость сердечной мышцы неодинакова во всех участках сердца. Наиболее возбудимым синусоатриальным узел. Возбудимость пучка Гиса значительно меньше. Хотя во время сокращения мышца сердца возбудима. Но в этот период, который почти совпадает с систолой, самые сильные искусственные раздражения сердца не вызывают нового сокращения вследствие «конфликта двух сильных возбуждений, слишком близко поставленных одно к другому во времени в одном и том же субстрате» (А. А. Ухтомский). Это состояние полное потери возбудимости во время сокращения сердца обозначается как абсолютная рефрактерность. После этого во время расслабления мышцы сердца при раздражении сердца ударом индукционного электрического тока, вследствие изменения интервала времени между двумя возбуждениями и изменения функционального состояния сердца, может быть получено вне очереди, но более слабое сокращение.

Этот второй период неполной возбудимости во время расслабления сердца обозначается как относительная рефрактерность. Непосредственно после периода относительной рефрактерности наблюдается кратковременное повышение возбудимости - экзальтационная фаза. Продолжительность абсолютной и относительной рефрактерности зависит от длительности- сердечного цикла. Период абсолютной рефрактерности синусоатриального узла у человека доходит до 0,3 с., предсердий — от 0,06 до 0,12 с., а желудочков - от 0,3 до 0,4 с.

Благодаря продолжительной рефрактерности сердце отвечает на продолжительное раздражение ритмическими сокращениями и в обычных условиях на может прийти в состояние тетануса.

Если на желудочек сердца холоднокровного животного нанести раздражение до прихода очередного автоматического импульса, т. е. в периоде относительной рефрактерности, то возникает преждевременное сокращение сердца - экстрасистола, за которым следует компенсаторная пауза, по продолжительности превышающая обычную.

Экстрасистолы возникают при изменениях в проводящей системе или в мышце сердца. Влияние на изменение возбудимости обозначается как батмотропное.

Сокращение сердечной мышцы не усиливается с увеличением раздражения. Если непосредственно наносить раздражение на сердечную мышцу, наращивая каждый раз величину раздражения, то обнаруживается следующий факт. Вначале при слабых раздражениях мышца па них не реагирует сокращением, затем при некотором повышении величины раздражения она сокращается. Это сокращение максимальное. Дальнейшее увеличение силы раздражения уже не увеличивает сокращения сердечной мышцы (Г. Боудич, 1871).

Однако это только частный случай, а не правило, так как высота сокращения мышцы сердца («все») изменяется и зависит, от ее возбудимости и лабильности, т. е. от ее функционального состояния. «Ничего» также не существует, так как при подпороговых раздражениях возникает возбуждение, которое суммируется при определенной частоте раздражений.

Величина наибольшего сокращения сердечной мышцы зависит от уровня обмена веществ в ней. Влияние на силу сердечных сокращений обозначается как инотропное.

В процессе филогенеза выработалась способность сердечной мышцы увеличивать силу своих сокращений в зависимости от увеличения количества притекающей к сердцу крови и повышения давления крови в артериальной системе.

Увеличение притока крови к сердцу и повышение кровяного давления в физиологических условиях вызываются мышечной работой и некоторыми эмоциями.

Как увеличивает сердце силу своих сокращений при повышенных нагрузках?

Сила сокращений сердца увеличивается благодаря увеличению начальной длины мышечных волокон (Старлинг, 1916).

Мышечные волокна имеют определенную длину при диастоле сердца во время покоя организма, перед началом сокращения сердца (начальная длина). При увеличении притока крови к сердцу и при затруднениях оттока, вызванных повышением кровяного давления, сердце в диастоле от переполнения полости кровью растягивается сильнее, следовательно, начальная длина мышечных волокон сердца увеличивается. Чем больше приток крови к сердцу или чем больше кровяное давление, затрудняющее отток крови, тем больше начальное растяжение мышечных волокон.

На изолированных мышцах установлено, что сокращении скелетной и сердечной мышц прямо пропорциональна начальниц длине мышечных волокон. Чем больше начальная длина волокон, тем сильнее сокращение. Поэтому при увеличении начальной длины волокон сердца оно сильнее сокращается во время систолы и благодаря этому увеличивается количество выбрасываемой .

Большое значение имеет кровоснабжение и питание сердечной мышцы. Чем лучше питание мышцы, тем меньше она предварительно растягивается.

В естественных условиях при отсутствии дополнительного растяжения сердца увеличение сокращений - результат усиления в сердечном мускуле под влиянием нервной системы (трофическое влияние).

Когда сердечная мышца утомляется, то в сердце падает и оно растягивается. Способность сердца производить прежнюю работу при утомлении зависит от степени растяжения его мышечных волокон.

Степень растяжения сердца определяется толщиной и состоянием сердечной мышцы. Максимально сердце может расшириться до перикарда, который, таким образом, обусловливает предельное расширение сердца.

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону “все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) (“ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением (“все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название “лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-1 м/с, по миокарду желудочков — 0,8-0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-0,05 м/с, что почти в 20-50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12-0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.


· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы . По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность . В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза (рис.9.).

Рис. 9. Экстрасистола а и удлиненная пауза б

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость . Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка-Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким-либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно-гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердечной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен — синоатриальный узел .

Рис. 10. Проводящая система сердца:

а - синоатриальный узел; б - предсердно-желудочковый узел; в - пучок Гиса; г - волокна Пуркинье.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом . От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

Долгое время в объяснении природы автоматии существовало две теории — нейрогенная и миогенная. Представители первой теории считали, что в основе автоматии лежат нервные структуры сердца, а представители второй теории связывали автоматию со способностью к ней мышечных элементов.

Взгляды на автоматию получили новые направления в связи с открытием проводящей системы сердца. В настоящее время способность к автоматической генерации импульсов в настоящее время связывают с особыми Р-клетками, входящими в состав синоатриального узла. Многочисленными и разнообразными опытами (Станниус—методом наложения лигатур, Гаскел - ограниченным охлаждением и нагреванием разных участков сердца), затем исследованиями с регистрацией электрических потенциалов было доказано, что главным центром автоматии 1 порядка, датчиком, водителем (пейсмекером) ритма сердечных сокращений является синоатриальный узел, так как в Р-клетках этого узла отмечается наибольшая скорость диастолической деполяризации и генерации потенциала действия, связанного с изменением ионной проницаемости клеточных мембран.

По удалению от этого узла способность проводящей системы сердца к автоматии уменьшается (закон градиента убывающей автоматии, открытый Гаскеллом). Исходя из этого закона, атриовентрикулярный узел обладает меньшей способностью к автоматии (центр автоматии второго порядка), а остальная часть проводящей системы является центром автоматии третьего порядка.

В нормальных условиях функционирует только автоматия синоатриального узла, а автоматия других отделов подавлена более высокой частотой его возбуждений. Это было доказано Станниусом методом наложения лигатур на разные отделы сердца лягушки. Так, если у лягушки наложить первую лигатуру, отделив венозный синус от предсердий, то сокращения сердца временно прекратятся. Затем через некоторое время или сразу после наложения второй лигатуры на предсердно-желудочковый узел начнутся сокращения предсердий или желудочка (в зависимости от того, как ляжет лигатура и куда отойдет узел), но во всех случаях эти сокращения будут иметь более редкий ритм ввиду меньшей способности к автоматии атриовентрикулярного узла.

Таким образом, импульсы вызывающие сокращения сердца, первоначально зарождаются в синоатриальном узле. Возбуждение от него распространяется по предсердиям и доходит до атриовентрикулярного узла, далее через него по пучку Гиса к желудочкам. При этом возбуждение от синоатриального узла к атриовентрикулярному по предсердиям передается не радиально, как это представлялось раньше, а по наиболее благоприятному, предпочтительному пути, т.е. по клеткам очень сходным с клетками Пуркинье.

Волокна проводящей системы сердца своими многочисленными разветвлениями соединяются с волокнами рабочего миокарда. В области их контакта происходит задержка передачи возбуждения в 30 мс, что имеет определенное функциональное значение. Одиночный импульс, пришедший раньше других по отдельному волокну проводящей системы, может вообще не пройти на рабочий миокард, а при одновременном приходе нескольких импульсов они суммируются, что облегчает их переход на миокард.

Понравилась статья? Поделиться с друзьями: